MathDB
eigenspace complement is invariant under linear operator

Source: VJIMC 1998 2.1

August 2, 2021
linear algberavector

Problem Statement

Let HH be a complex Hilbert space. Let T:HHT:H\to H be a bounded linear operator such that (Tx,x)x2|(Tx,x)|\le\lVert x\rVert^2 for each xHx\in H. Assume that μC\mu\in\mathbb C, μ=1|\mu|=1, is an eigenvalue with the corresponding eigenspace E={ϕH:Tϕ=μϕ}E=\{\phi\in H:T\phi=\mu\phi\}. Prove that the orthogonal complement E={xH:ϕE:(x,ϕ)=0}E^\perp=\{x\in H:\forall\phi\in E:(x,\phi)=0\} of EE is TT-invariant, i.e., T(E)ET(E^\perp)\subseteq E^\perp.