MathDB
Turkey NMO 2006 1st Round - P18 (Number Theory)

Source:

February 2, 2013
modular arithmetic

Problem Statement

What is the least positive integer kk satisfying that n+kSn+k\in S for every nSn\in S where S={n:n3n+(2n+1)5n0(mod7)}S=\{n : n3^n + (2n+1)5^n \equiv 0 \pmod 7\}?
<spanclass=latexbold>(A)</span> 6<spanclass=latexbold>(B)</span> 7<spanclass=latexbold>(C)</span> 14<spanclass=latexbold>(D)</span> 21<spanclass=latexbold>(E)</span> 42 <span class='latex-bold'>(A)</span>\ 6 \qquad<span class='latex-bold'>(B)</span>\ 7 \qquad<span class='latex-bold'>(C)</span>\ 14 \qquad<span class='latex-bold'>(D)</span>\ 21 \qquad<span class='latex-bold'>(E)</span>\ 42