MathDB
Functional equation on functions on F_p

Source: Miklos Schweitzer 2020, Problem 8

December 1, 2020
algebrafunctional equationnumber theoryfunction

Problem Statement

Let Fp\mathbb{F}_{p} denote the pp-element field for a prime p>3p>3 and let SS be the set of functions from Fp\mathbb{F}_{p} to Fp\mathbb{F}_{p}. Find all functions D ⁣:SSD\colon S\to S satisfying D(fg)=(D(f)g)D(g)D(f\circ g)=(D(f)\circ g)\cdot D(g) for all f,gSf,g \in {S}. Here, \circ denotes the function composition, so (fg)(x)(f\circ g)(x) is the function f(g(x))f(g(x)), and \cdot denotes multiplication, so (fg)=f(x)g(x)(f\cdot g)=f(x)g(x).