MathDB
Inequality

Source:  Iran 3rd round-2017-Algebra final exam-P3

September 2, 2017
algebraInequalityAM-GMIraninequalities

Problem Statement

Let a,ba,b and cc be positive real numbers. Prove that cyca3b(3a+2b)3cyca2bc(2a+2b+c)3\sum_{cyc} \frac {a^3b}{(3a+2b)^3} \ge \sum_{cyc} \frac {a^2bc}{(2a+2b+c)^3}