MathDB
Problems
Contests
National and Regional Contests
China Contests
China Team Selection Test
2010 China Team Selection Test
2
China 2010 quiz2 problem 2
China 2010 quiz2 problem 2
Source:
September 8, 2010
polynomial
inequalities
combinatorics
Problem Statement
Let
M
=
{
1
,
2
,
⋯
,
n
}
M=\{1,2,\cdots,n\}
M
=
{
1
,
2
,
⋯
,
n
}
, each element of
M
M
M
is colored in either red, blue or yellow. Set
A
=
{
(
x
,
y
,
z
)
∈
M
×
M
×
M
∣
x
+
y
+
z
≡
0
m
o
d
n
A=\{(x,y,z)\in M\times M\times M|x+y+z\equiv 0\mod n
A
=
{(
x
,
y
,
z
)
∈
M
×
M
×
M
∣
x
+
y
+
z
≡
0
mod
n
,
x
,
y
,
z
x,y,z
x
,
y
,
z
are of same color
}
,
\},
}
,
B
=
{
(
x
,
y
,
z
)
∈
M
×
M
×
M
∣
x
+
y
+
z
≡
0
m
o
d
n
,
B=\{(x,y,z)\in M\times M\times M|x+y+z\equiv 0\mod n,
B
=
{(
x
,
y
,
z
)
∈
M
×
M
×
M
∣
x
+
y
+
z
≡
0
mod
n
,
x
,
y
,
z
x,y,z
x
,
y
,
z
are of pairwise distinct color
}
.
\}.
}
.
Prove that
2
∣
A
∣
≥
∣
B
∣
2|A|\geq |B|
2∣
A
∣
≥
∣
B
∣
.
Back to Problems
View on AoPS