MathDB
(x + 2x^2 +...+ nx^n)^2 = a_2x^2 + a_3x^3 +...+ a_{2n}x^{2n}

Source:

October 14, 2010
algebragenerating functionsIMO Longlist 1978

Problem Statement

If f(x)=(x+2x2++nxn)2=a2x2+a3x3++a2nx2n,f(x) = (x + 2x^2 +\cdots+ nx^n)^2 = a_2x^2 + a_3x^3 + \cdots+ a_{2n}x^{2n}, prove that an+1+an+2++a2n=(n+12)5n2+5n+212a_{n+1} + a_{n+2} + \cdots + a_{2n} =\dbinom{n + 1}{2}\frac{5n^2 + 5n + 2}{12}