MathDB
combinatorics problem

Source: 2023 China TST P10

March 19, 2023
combinatoricsChina TST

Problem Statement

The set of nonempty integers AA is said to be "elegant" if it is for any aA,a\in A, 1k2023,1\leq k\leq 2023, {bA:b3k=a3k}=2k.\left| \left\{ b\in A:\left\lfloor\frac b{3^k}\right\rfloor =\left\lfloor\frac a{3^k}\right\rfloor\right\}\right| =2^k. Prove that if the intersection of the integer set SS and any "elegant" set is not empty,, then SS contains an "elegant" set.