Let X0,ξi,j,ϵk (i, j, k ∈ N) be independent, non-negative integer random variables. Suppose that ξi,j (i, j ∈ N) have the same distribution, ϵk (k ∈ N) also have the same distribution.
E(ξ1,1)=1 , E(X0l)<∞ , E(ξ1,1l)<∞ , E(ϵ1l)<∞ for some l∈N
Consider the random variable Xn:=ϵn+∑j=1Xn−1ξn,j (n ∈ N) , where ∑j=10ξn,j:=0
Introduce the sequence Mn:=Xn−Xn−1−E(ϵn) (n ∈ N)
Prove that there is a polynomial P of degree ≤l/2 such that E(Mnl)=Pl(n) (n ∈ N).