MathDB
(DB+BC)^2=AD^2+AC^2

Source: Lithuanian TST 2005 p2 - Italy 200

December 10, 2022
geometryangles

Problem Statement

Let ABCDABCD be a convex quadrilateral, and write α=DAB\alpha=\angle DAB, β=ADB\beta=\angle ADB, γ=ACB\gamma=\angle ACB, δ=DBC\delta= \angle DBC and ϵ=DBA\epsilon=\angle DBA. Assuming that α<π/2\alpha<\pi/2, β+γ=π/2\beta+\gamma=\pi /2, and δ+2ϵ=π\delta+2\epsilon=\pi, prove that (DB+BC)2=AD2+AC2(DB+BC)^2=AD^2+AC^2.