MathDB
Functional equation from Q^+ to Q^+

Source: Turkey IMO TST 1993 #6

July 7, 2011
functionalgebra unsolvedalgebra

Problem Statement

Determine all functions f:Q+Q+f: \mathbb{Q^+} \rightarrow \mathbb{Q^+} that satisfy: f(x+yx)=f(x)+f(yx)+2yfor allx,yQ+f\left(x+\frac{y}{x}\right) = f(x)+f\left(\frac{y}{x}\right)+2y \:\text{for all}\: x, y \in \mathbb{Q^+}