MathDB
Problems
Contests
National and Regional Contests
China Contests
South East Mathematical Olympiad
2017 South East Mathematical Olympiad
4
CSMO 2017 Grade 10 Problem 4
CSMO 2017 Grade 10 Problem 4
Source: CSMO 2017 Grade 10 Problem 4
August 6, 2017
algebra
maximum value
Problem Statement
Let
a
1
,
a
2
,
…
,
a
2017
a_1,a_2,\dots,a_{2017}
a
1
,
a
2
,
…
,
a
2017
be reals satisfied
a
1
=
a
2017
a_1=a_{2017}
a
1
=
a
2017
,
∣
a
i
+
a
i
+
2
−
2
a
i
+
1
∣
≤
1
|a_i+a_{i+2}-2a_{i+1}|\le 1
∣
a
i
+
a
i
+
2
−
2
a
i
+
1
∣
≤
1
for all
i
=
1
,
2
,
…
,
2015
i=1,2,\dots,2015
i
=
1
,
2
,
…
,
2015
. Find the maximum value of
max
1
≤
i
<
j
≤
2017
∣
a
i
−
a
j
∣
\max_{1\le i<j\le 2017}|a_i-a_j|
max
1
≤
i
<
j
≤
2017
∣
a
i
−
a
j
∣
.
Back to Problems
View on AoPS