MathDB
max{a, b, c}>= 2, a+b+c=5, min{a^2+b^2+c^2} (HOMC 2008 J Q10)

Source:

July 25, 2019
algebrainequalities

Problem Statement

Let a,b,c[1,3]a,b,c \in [1, 3] and satisfy the following conditions: max{a,b,c}2 max \{a, b, c\}\ge 2 and a+b+c=5 a + b + c = 5 What is the smallest possible value of a2+b2+c2a^2 + b^2 + c^2?