MathDB
Problems
Contests
National and Regional Contests
China Contests
China Team Selection Test
2003 China Team Selection Test
3
China TST 2003 inequality
China TST 2003 inequality
Source: China Team Selection Test 2003, Day 1, Problem 3
October 13, 2005
inequalities
vector
induction
function
ceiling function
inequalities unsolved
Problem Statement
Suppose
A
⊂
{
(
a
1
,
a
2
,
…
,
a
n
)
∣
a
i
∈
R
,
i
=
1
,
2
…
,
n
}
A\subset \{(a_1,a_2,\dots,a_n)\mid a_i\in \mathbb{R},i=1,2\dots,n\}
A
⊂
{(
a
1
,
a
2
,
…
,
a
n
)
∣
a
i
∈
R
,
i
=
1
,
2
…
,
n
}
. For any
α
=
(
a
1
,
a
2
,
…
,
a
n
)
∈
A
\alpha=(a_1,a_2,\dots,a_n)\in A
α
=
(
a
1
,
a
2
,
…
,
a
n
)
∈
A
and
β
=
(
b
1
,
b
2
,
…
,
b
n
)
∈
A
\beta=(b_1,b_2,\dots,b_n)\in A
β
=
(
b
1
,
b
2
,
…
,
b
n
)
∈
A
, we define
γ
(
α
,
β
)
=
(
∣
a
1
−
b
1
∣
,
∣
a
2
−
b
2
∣
,
…
,
∣
a
n
−
b
n
∣
)
,
\gamma(\alpha,\beta)=(|a_1-b_1|,|a_2-b_2|,\dots,|a_n-b_n|),
γ
(
α
,
β
)
=
(
∣
a
1
−
b
1
∣
,
∣
a
2
−
b
2
∣
,
…
,
∣
a
n
−
b
n
∣
)
,
D
(
A
)
=
{
γ
(
α
,
β
)
∣
α
,
β
∈
A
}
.
D(A)=\{\gamma(\alpha,\beta)\mid\alpha,\beta\in A\}.
D
(
A
)
=
{
γ
(
α
,
β
)
∣
α
,
β
∈
A
}
.
Please show that
∣
D
(
A
)
∣
≥
∣
A
∣
|D(A)|\geq |A|
∣
D
(
A
)
∣
≥
∣
A
∣
.
Back to Problems
View on AoPS