MathDB
Problems
Contests
Undergraduate contests
Vojtěch Jarník IMC
2024 VJIMC
4
Upper bound on integers satisfying n|3^n-1
Upper bound on integers satisfying n|3^n-1
Source: VJIMC 2024, Category I, Problem 4
April 14, 2024
number theory
Analytic Number Theory
Divisibility
Problem Statement
Let
p
>
2
p>2
p
>
2
be a prime and let
A
=
{
n
∈
N
:
2
p
∣
n
and
p
2
∤
n
and
n
∣
3
n
−
1
}
.
\mathcal{A}=\{n \in \mathbb{N}: 2p \mid n \text{ and } p^2\nmid n \text{ and } n \mid 3^n-1\}.
A
=
{
n
∈
N
:
2
p
∣
n
and
p
2
∤
n
and
n
∣
3
n
−
1
}
.
Prove that
lim sup
k
→
∞
∣
A
∩
[
1
,
k
]
∣
k
≤
2
log
3
p
log
p
.
\limsup_{k \to \infty} \frac{\vert \mathcal{A} \cap [1,k]\vert}{k} \le \frac{2\log 3}{p\log p}.
k
→
∞
lim
sup
k
∣
A
∩
[
1
,
k
]
∣
≤
p
lo
g
p
2
lo
g
3
.
Back to Problems
View on AoPS