MathDB
Inequality with All Means Except the QM

Source: Swiss TST 2019 P11

May 12, 2020
inequalities

Problem Statement

Let nn be a positive integer. Determine whether there exists a positive real number ϵ>0\epsilon >0 (depending on nn) such that for all positive real numbers x1,x2,,xnx_1,x_2,\dots ,x_n, the inequality x1x2xnn(1ϵ)x1+x2++xnn+ϵn1x1+1x2++1xn,\sqrt[n]{x_1x_2\dots x_n}\leq (1-\epsilon)\frac{x_1+x_2+\dots+x_n}{n}+\epsilon \frac{n}{\frac{1}{x_1}+\frac{1}{x_2}+\dots +\frac{1}{x_n}}, holds.