MathDB
a>0, f(a)<0 for f(\sqrt{xy})=\frac{f(x)+f(y)}{2}

Source: Mathcenter Contest / Oly - Thai Forum 2012 (R1) p5 sl-13 https://artofproblemsolving.com/community/c3196914_mathcenter_contest

November 13, 2022
algebrainequalitiesfunctional

Problem Statement

Define f:R+Rf : \mathbb{R}^+ \rightarrow \mathbb{R} as the strictly increasing function such that f(xy)=f(x)+f(y)2f(\sqrt{xy})=\frac{f(x)+f(y)}{2} for all positive real numbers x,yx,y. Prove that there are some positive real numbers aa where f(a)<0.
(PP-nine)