MathDB
Problems
Contests
Undergraduate contests
Jozsef Wildt International Math Competition
2019 Jozsef Wildt International Math Competition
W. 12
Prove this integral inequality
Prove this integral inequality
Source: 2019 Jozsef Wildt International Math Competition-W. 12
May 18, 2020
integration
inequalities
calculus
Problem Statement
If
0
<
a
<
b
0 < a < b
0
<
a
<
b
then:
∫
a
a
+
b
2
(
tan
−
1
t
)
d
t
∫
a
b
(
tan
−
1
t
)
d
t
<
1
2
\frac{\int \limits^{\frac{a+b}{2}}_{a}\left(\tan^{-1}t\right)dt}{\int \limits_{a}^{b}\left(\tan^{-1}t\right)dt}<\frac{1}{2}
a
∫
b
(
tan
−
1
t
)
d
t
a
∫
2
a
+
b
(
tan
−
1
t
)
d
t
<
2
1
Back to Problems
View on AoPS