MathDB
Regional Olympiad - FBH 2015 Grade 10 Problem 2

Source: Regional Olympiad - Federation of Bosnia and Herzegovina 2015

September 23, 2018
inequalitiesalgebra

Problem Statement

Let aa, bb and cc be positive real numbers such that abc=1abc=1. Prove the inequality: 1a+b+1b+c+1c+aa2+b2+c22\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \leq \frac{a^2+b^2+c^2}{2}