orthocenters inside a quadrilateral, parallelogram wanted
Source: Dutch NMO 2016 p4 juniors
September 7, 2019
geometryparallelogramorthocenter
Problem Statement
In a quadrilateral the intersection of the diagonals is called . Point is the orthocentre of triangle . (The orthocentre of a triangle is the point where the three altitudes of the triangle intersect.) Point is the orthocentre of triangle . Suppose that lies inside triangle and lies inside triangle . Moreover, suppose that is the midpoint of line segment . Prove that is a parallelogram.
[asy]
import geometry;unitsize (1.5 cm);pair A, B, C, D, P, X, Y;A = (0,0);
B = (2,-0.5);
C = (3.5,2.2);
D = A + C - B;
P = (A + C)/2;
X = orthocentercenter(A,B,P);
Y = orthocentercenter(C,D,P);draw(A--B--C--D--cycle);
draw(A--C);
draw(B--D);
draw(A--extension(A,X,B,P), dotted);
draw(B--extension(B,X,A,P), dotted);
draw(P--extension(P,X,A,B), dotted);
draw(C--extension(C,Y,D,P), dotted);
draw(D--extension(D,Y,C,P), dotted);
draw(P--extension(P,Y,C,D), dotted);dot("", A, W);
dot("", B, S);
dot("", C, E);
dot("", D, N);
dot("", P, E);
dot("", X, NW);
dot("", Y, SE);
[/asy]