MathDB
orthocenters inside a quadrilateral, parallelogram wanted

Source: Dutch NMO 2016 p4 juniors

September 7, 2019
geometryparallelogramorthocenter

Problem Statement

In a quadrilateral ABCDABCD the intersection of the diagonals is called PP. Point XX is the orthocentre of triangle PABPAB. (The orthocentre of a triangle is the point where the three altitudes of the triangle intersect.) Point YY is the orthocentre of triangle PCDPCD. Suppose that XX lies inside triangle PABPAB and YY lies inside triangle PCDPCD. Moreover, suppose that PP is the midpoint of line segment XYXY . Prove that ABCDABCD is a parallelogram. [asy] import geometry;
unitsize (1.5 cm);
pair A, B, C, D, P, X, Y;
A = (0,0); B = (2,-0.5); C = (3.5,2.2); D = A + C - B; P = (A + C)/2; X = orthocentercenter(A,B,P); Y = orthocentercenter(C,D,P);
draw(A--B--C--D--cycle); draw(A--C); draw(B--D); draw(A--extension(A,X,B,P), dotted); draw(B--extension(B,X,A,P), dotted); draw(P--extension(P,X,A,B), dotted); draw(C--extension(C,Y,D,P), dotted); draw(D--extension(D,Y,C,P), dotted); draw(P--extension(P,Y,C,D), dotted);
dot("AA", A, W); dot("BB", B, S); dot("CC", C, E); dot("DD", D, N); dot("PP", P, E); dot("XX", X, NW); dot("YY", Y, SE); [/asy]