MathDB
a\leq a_i\leq\frac{1}{a_i}

Source: 5-th Taiwanese Mathematical Olympiad 1996

January 11, 2007
inequalitiesinequalities proposedn-variable inequality

Problem Statement

Let 0<a10<a\leq 1 be a real number and let aai1aii=1,1996a\leq a_{i}\leq\frac{1}{a_{i}}\forall i=\overline{1,1996} are real numbers. Prove that for any nonnegative real numbers ki(i=1,2,...,1996)k_{i}(i=1,2,...,1996) such that i=11996ki=1\sum_{i=1}^{1996}k_{i}=1 we have (i=11996kiai)(i=11996kiai)(a+1a)2(\sum_{i=1}^{1996}k_{i}a_{i})(\sum_{i=1}^{1996}\frac{k_{i}}{a_{i}})\leq (a+\frac{1}{a})^{2}.