MathDB
Problems
Contests
National and Regional Contests
Taiwan Contests
Taiwan National Olympiad
1996 Taiwan National Olympiad
2
a\leq a_i\leq\frac{1}{a_i}
a\leq a_i\leq\frac{1}{a_i}
Source: 5-th Taiwanese Mathematical Olympiad 1996
January 11, 2007
inequalities
inequalities proposed
n-variable inequality
Problem Statement
Let
0
<
a
≤
1
0<a\leq 1
0
<
a
≤
1
be a real number and let
a
≤
a
i
≤
1
a
i
∀
i
=
1
,
1996
‾
a\leq a_{i}\leq\frac{1}{a_{i}}\forall i=\overline{1,1996}
a
≤
a
i
≤
a
i
1
∀
i
=
1
,
1996
are real numbers. Prove that for any nonnegative real numbers
k
i
(
i
=
1
,
2
,
.
.
.
,
1996
)
k_{i}(i=1,2,...,1996)
k
i
(
i
=
1
,
2
,
...
,
1996
)
such that
∑
i
=
1
1996
k
i
=
1
\sum_{i=1}^{1996}k_{i}=1
∑
i
=
1
1996
k
i
=
1
we have
(
∑
i
=
1
1996
k
i
a
i
)
(
∑
i
=
1
1996
k
i
a
i
)
≤
(
a
+
1
a
)
2
(\sum_{i=1}^{1996}k_{i}a_{i})(\sum_{i=1}^{1996}\frac{k_{i}}{a_{i}})\leq (a+\frac{1}{a})^{2}
(
∑
i
=
1
1996
k
i
a
i
)
(
∑
i
=
1
1996
a
i
k
i
)
≤
(
a
+
a
1
)
2
.
Back to Problems
View on AoPS