MathDB
1/a + 1/b + 1/c = 1 Inequality

Source: 239 2008 J2

July 28, 2020
inequalitiesalgebra

Problem Statement

For all positive numbers a,b,ca, b, c satisfying 1a+1b+1c=1\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1, prove that: aa+bc+bb+ca+cc+ab34. \frac{a}{a+bc} + \frac{b}{b+ca} + \frac{c}{c+ab} \geq \frac{3}{4} .