MathDB
Does there exist a function f^{1989}(n) = 2n

Source: China TST 1989, problem 5

June 27, 2005
functionalgebra unsolvedalgebra

Problem Statement

Let N={1,2,}.\mathbb{N} = \{1,2, \ldots\}. Does there exists a function f:NNf: \mathbb{N} \mapsto \mathbb{N} such that nN,\forall n \in \mathbb{N}, f1989(n)=2nf^{1989}(n) = 2 \cdot n ?