MathDB
Hard inequality

Source: China TST 2003 Quizzes

April 1, 2006
inequalitiesinequalities proposed

Problem Statement

Let a1,a2,...,ana_{1},a_{2},...,a_{n} be positive real number (n2)(n \geq 2),not all equal,such that k=1nak2n=1\sum_{k=1}^n a_{k}^{-2n}=1,prove that: k=1nak2nn2.1i<jn(aiajajai)2>n2\sum_{k=1}^n a_{k}^{2n}-n^2.\sum_{1 \leq i<j \leq n}(\frac{a_{i}}{a_{j}}-\frac{a_{j}}{a_{i}})^2 >n^2