MathDB
inequality in vectors

Source: Mongolia MO 2000 Teachers P2

April 22, 2021
inequalitiesgeometryVectorsvector

Problem Statement

Let n2n\ge2. For any two nn-vectors x=(x1,,xn)\vec x=(x_1,\ldots,x_n) and y=(y1,,yn)\vec y=(y_1,\ldots,y_n), we define f(x,y)=x1y1i=2nxiyi.f\left(\vec x,\vec y\right)=x_1\overline{y_1}-\sum_{i=2}^nx_i\overline{y_i}.Prove that if f(x,x)0f\left(\vec x,\vec x\right)\ge0, and f(y,y)0f\left(\vec y,\vec y\right)\ge0, then f(x,y)2f(x,x)f(y,y)\left|f\left(\vec x,\vec y\right)\right|^2\ge f\left(\vec x,\vec x\right)f\left(\vec y,\vec y\right).