MathDB
f(n) < 3\sqrt{n} and f(n) > k if n > k! + k, L(n, 1) < L(n, 2) < ... < L(n, k)

Source: Indian Postal Coaching 2009 set 3 p5

May 26, 2020
number theoryleast common multipleLCMinequalities

Problem Statement

For positive integers n,kn, k with 1kn1 \le k \le n, define L(n,k)=Lcm(n,n1,n2,...,nk+1)L(n, k) = Lcm \,(n, n - 1, n -2, ..., n - k + 1) Let f(n)f(n) be the largest value of kk such that L(n,1)<L(n,2)<...<L(n,k)L(n, 1) < L(n, 2) < ... < L(n, k). Prove that f(n)<3nf(n) < 3\sqrt{n} and f(n)>kf(n) > k if n>k!+kn > k! + k.