MathDB
Weird Inequality

Source: 2016 Thailand October Camp 3.3

February 28, 2022
inequalities

Problem Statement

Let a,b,cR+a, b, c \in\mathbb{R}^+. Prove that cycab(12a+c+12b+c)<cyca3+b3c2+ab.\sum_{cyc}ab\left(\frac{1}{2a+c}+\frac{1}{2b+c}\right)<\sum_{cyc}\frac{a^3+b^3}{c^2+ab}.