MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
2000 Miklós Schweitzer
1
Miklós Schweitzer 2000, Problem 1
Miklós Schweitzer 2000, Problem 1
Source: Miklós Schweitzer 2000
July 30, 2016
college contests
Miklos Schweitzer
function
ordinals
Problem Statement
Prove that there exists a function
f
:
[
ω
1
]
2
→
ω
1
f\colon [\omega_1]^2 \rightarrow \omega _1
f
:
[
ω
1
]
2
→
ω
1
such that (i)
f
(
α
,
β
)
<
m
i
n
(
α
,
β
)
f(\alpha, \beta)< \mathrm{min}(\alpha, \beta)
f
(
α
,
β
)
<
min
(
α
,
β
)
whenever
m
i
n
(
α
,
β
)
>
0
\mathrm{min}(\alpha,\beta)>0
min
(
α
,
β
)
>
0
; and (ii) if
α
0
<
α
1
<
…
<
α
i
<
…
<
ω
1
\alpha_0<\alpha_1<\ldots<\alpha_i<\ldots<\omega_1
α
0
<
α
1
<
…
<
α
i
<
…
<
ω
1
then
sup
{
a
i
:
i
<
ω
}
=
sup
{
f
(
α
i
,
α
j
)
:
i
,
j
<
ω
}
\sup\left\{ a_i \colon i<\omega \right\} =\sup \left\{ f(\alpha_i, \alpha_j)\colon i,j<\omega\right\}
sup
{
a
i
:
i
<
ω
}
=
sup
{
f
(
α
i
,
α
j
)
:
i
,
j
<
ω
}
.
Back to Problems
View on AoPS