MathDB
Problems
Contests
National and Regional Contests
China Contests
China Team Selection Test
2022 China Team Selection Test
6
Distance between products with sums
Distance between products with sums
Source: 2022 China TST, Test 2, P6
March 29, 2022
algebra
combinatorics
Problem Statement
Let
m
,
n
m,n
m
,
n
be two positive integers with
m
≥
n
≥
2022
m \ge n \ge 2022
m
≥
n
≥
2022
. Let
a
1
,
a
2
,
…
,
a
n
,
b
1
,
b
2
,
…
,
b
n
a_1,a_2,\ldots,a_n,b_1,b_2,\ldots,b_n
a
1
,
a
2
,
…
,
a
n
,
b
1
,
b
2
,
…
,
b
n
be
2
n
2n
2
n
real numbers. Prove that the numbers of ordered pairs
(
i
,
j
)
(
1
≤
i
,
j
≤
n
)
(i,j) ~(1 \le i,j \le n)
(
i
,
j
)
(
1
≤
i
,
j
≤
n
)
such that
∣
a
i
+
b
j
−
i
j
∣
≤
m
|a_i+b_j-ij| \le m
∣
a
i
+
b
j
−
ij
∣
≤
m
does not exceed
3
n
m
log
n
3n\sqrt{m \log n}
3
n
m
lo
g
n
.
Back to Problems
View on AoPS