MathDB
Problems
Contests
Undergraduate contests
Putnam
1952 Putnam
B5
Putnam 1952 B5
Putnam 1952 B5
Source: Putnam 1952
July 7, 2022
Putnam
Convergence
series
Problem Statement
If the terms of a sequence
a
1
,
a
2
,
…
a_{1}, a_{2}, \ldots
a
1
,
a
2
,
…
are monotonic, and if
∑
n
=
1
∞
a
n
\sum_{n=1}^{\infty} a_n
∑
n
=
1
∞
a
n
converges, show that
∑
n
=
1
∞
n
(
a
n
−
a
n
+
1
)
\sum_{n=1}^{\infty} n(a_{n} -a_{n+1 })
∑
n
=
1
∞
n
(
a
n
−
a
n
+
1
)
converges.
Back to Problems
View on AoPS