MathDB
Putnam 1952 B5

Source: Putnam 1952

July 7, 2022
PutnamConvergenceseries

Problem Statement

If the terms of a sequence a1,a2,a_{1}, a_{2}, \ldots are monotonic, and if n=1an\sum_{n=1}^{\infty} a_n converges, show that n=1n(anan+1)\sum_{n=1}^{\infty} n(a_{n} -a_{n+1 }) converges.