MathDB
Smallest integer n for f(n)=5 given an identity

Source:

October 12, 2010
functionalgebra unsolvedalgebra

Problem Statement

The function f(n)f(n) is defined on the nonnegative integers nn by: f(0)=0,f(1)=1f(0) = 0, f(1) = 1, and f(n)=f(n12m(m1))f(12m(m+1)n)f(n) = f\left(n -\frac{1}{2}m(m - 1)\right)-f\left(\frac{1}{2}m(m+ 1)-n\right) for 12m(m1)<n12m(m+1),m2\frac{1}{2}m(m - 1) < n \le \frac{1}{2}m(m+ 1), m \ge 2. Find the smallest integer nn for which f(n)=5f(n) = 5.