MathDB
Problems
Contests
International Contests
Baltic Way
1990 Baltic Way
4
This sum is always positive
This sum is always positive
Source:
April 19, 2013
inequalities
Problem Statement
Prove that, for any real numbers
a
1
,
a
2
,
…
,
a
n
a_1, a_2, \dots , a_n
a
1
,
a
2
,
…
,
a
n
,
∑
i
,
j
=
1
n
a
i
a
j
i
+
j
−
1
≥
0.
\sum_{i,j=1}^n \frac{a_ia_j}{i+j-1}\ge 0.
i
,
j
=
1
∑
n
i
+
j
−
1
a
i
a
j
≥
0.
Back to Problems
View on AoPS