MathDB
IMO Shortlist 2009 - Problem C3

Source:

July 6, 2010
linear algebracombinatoricsrecursionSequenceIMO Shortlist

Problem Statement

Let nn be a positive integer. Given a sequence ε1\varepsilon_1, \dots, εn1\varepsilon_{n - 1} with εi=0\varepsilon_i = 0 or εi=1\varepsilon_i = 1 for each i=1i = 1, \dots, n1n - 1, the sequences a0a_0, \dots, ana_n and b0b_0, \dots, bnb_n are constructed by the following rules: a_0 = b_0 = 1,   a_1 = b_1 = 7, \begin{array}{lll} a_{i+1} = \begin{cases} 2a_{i-1} + 3a_i, \\ 3a_{i-1} + a_i, \end{cases} & \begin{array}{l} \text{if } \varepsilon_i = 0, \\ \text{if } \varepsilon_i = 1, \end{array} & \text{for each } i = 1, \dots, n - 1, \$$15pt] b_{i+1}= \begin{cases} 2b_{i-1} + 3b_i, \\ 3b_{i-1} + b_i, \end{cases} & \begin{array}{l} \text{if } \varepsilon_{n-i} = 0, \\ \text{if } \varepsilon_{n-i} = 1, \end{array} & \text{for each } i = 1, \dots, n - 1. \end{array} Prove that an=bna_n = b_n.
Proposed by Ilya Bogdanov, Russia