MathDB
Combination

Source: 0

April 21, 2009

Problem Statement

2 squares are painted in blue and 2 squares are painted in red on a 3×3 3\times 3 board in such a way that two square with same color is neither at same row nor at same column. In how many different ways can these four squares be painted?
<spanclass=latexbold>(A)</span> 198<spanclass=latexbold>(B)</span> 288<spanclass=latexbold>(C)</span> 396<spanclass=latexbold>(D)</span> 576<spanclass=latexbold>(E)</span> 792<span class='latex-bold'>(A)</span>\ 198 \qquad<span class='latex-bold'>(B)</span>\ 288 \qquad<span class='latex-bold'>(C)</span>\ 396 \qquad<span class='latex-bold'>(D)</span>\ 576 \qquad<span class='latex-bold'>(E)</span>\ 792