MathDB
Problems
Contests
National and Regional Contests
China Contests
National High School Mathematics League
1999 National High School Mathematics League
3
Logarithm
Logarithm
Source: 1999 National High School Mathematics League, Exam One, Problem 3
March 9, 2020
logarithms
Problem Statement
If
(
log
2
3
)
x
−
(
log
5
3
)
x
≥
(
log
2
3
)
−
y
−
(
log
5
3
)
−
y
(\log_2 3)^x-(\log_5 3)^x\geq (\log_2 3)^{-y}-(\log_5 3)^{-y}
(
lo
g
2
3
)
x
−
(
lo
g
5
3
)
x
≥
(
lo
g
2
3
)
−
y
−
(
lo
g
5
3
)
−
y
, then
(A)
x
−
y
≥
0
(B)
x
+
y
≥
0
(C)
x
−
y
≤
0
(D)
x
+
y
≤
0
\text{(A)}x-y\geq0\qquad\text{(B)}x+y\geq0\qquad\text{(C)}x-y\leq0\qquad\text{(D)}x+y\leq0
(A)
x
−
y
≥
0
(B)
x
+
y
≥
0
(C)
x
−
y
≤
0
(D)
x
+
y
≤
0
Back to Problems
View on AoPS