MathDB
ASU 299 All Soviet Union MO 1980 x<1/3(p/4-sqrt(d^2-s/2)) in parallelepiped

Source:

July 19, 2019
geometric inequalityinequalitiesgeometry3D geometryparallelepiped

Problem Statement

Let the edges of rectangular parallelepiped be x,yx,y and zz (x<y<zx<y<z). Let p=4(x+y+z),s=2(xy+yz+zx)andd=x2+y2+z2p=4(x+y+z), s=2(xy+yz+zx) \,\,\, and \,\,\, d=\sqrt{x^2+y^2+z^2} be its perimeter, surface area and diagonal length, respectively. Prove that x<13(p4d2s2)andz>13(p4d2s2)x < \frac{1}{3}\left( \frac{p}{4}- \sqrt{d^2 - \frac{s}{2}}\right )\,\,\, and \,\,\, z > \frac{1}{3}\left( \frac{p}{4}- \sqrt{d^2 - \frac{s}{2}}\right )