MathDB
min of f(x) =|x| +|(1 - 2013x)/(2013 - x)| when x \in [-1, 1] (HOMC 2013 Q2)

Source:

July 30, 2019
functionminimumalgebra

Problem Statement

The smallest value of the function f(x)=x+12013x2013xf(x) =|x| +\left|\frac{1 - 2013x}{2013 - x}\right| where x[1,1]x \in [-1, 1] is:
(A): 12012\frac{1}{2012}, (B): 12013\frac{1}{2013}, (C): 12014\frac{1}{2014}, (D): 12015\frac{1}{2015}, (E): None of the above.