MathDB
Putnam 1965 A3

Source:

September 27, 2020
Putnamlimit

Problem Statement

Show that, for any sequence a1,a2,a_1,a_2,\ldots of real numbers, the two conditions limne(ia1)+e(ia2)++e(ian)n=α \lim_{n\to\infty}\frac{e^{(ia_1)} + e^{(ia_2)} + \cdots + e^{(ia_n)}}n = \alpha and limne(ia1)+e(ia2)++e(ian2)n2=α \lim_{n\to\infty}\frac{e^{(ia_1)} + e^{(ia_2)} + \cdots + e^{(ia_{n^2})}}{n^2} = \alpha are equivalent.