Radical axes of the circumcircles of the pairs of triangles
Source: Vietnam TST 1995, Problem 1
July 27, 2008
geometrycircumcirclegeometry unsolved
Problem Statement
Let be given a triangle with BC \equal{} a, CA \equal{} b, AB \equal{} c. Six distinct points , , , , , not coinciding with , , are chosen so that , lie on line ; , lie on and , lie on . Let , , three real numbers satisfy \overrightarrow{A_1A_2} \equal{} \frac {\alpha}{a}\overrightarrow{BC}, \overrightarrow{B_1B_2} \equal{} \frac {\beta}{b}\overrightarrow{CA}, \overrightarrow{C_1C_2} \equal{} \frac {\gamma}{c}\overrightarrow{AB}. Let , , be respectively the radical axes of the circumcircles of the pairs of triangles and ; and ; and . Prove that , and are concurrent if and only if \alpha a \plus{} \beta b \plus{} \gamma c \neq 0.