MathDB
| a_ {i +1} - a_ i |= 1given, wanted a _ 1 - a _ {2n} = n iff 1<= a _ {2k} <= n

Source: Ukraine TST 2011 p12

May 7, 2020
permutationscombinatorics

Problem Statement

Let n n be a natural number. Consider all permutations (a1, , a2n) ({{a} _ {1}}, \ \ldots, \ {{a} _ {2n}}) of the first 2n 2n natural numbers such that the numbers ai+1ai, i=1, , 2n1, | {{a} _ {i +1}} - {{a} _ {i}} |, \ i = 1, \ \ldots, \ 2n-1, are pairwise different. Prove that a1a2n=n {{a} _ {1}} - {{a} _ {2n}} = n if and only if 1a2kn 1 \le {{a} _ {2k}} \le n for all k=1, , n k = 1, \ \ldots, \ n .