MathDB
Cubic Equation

Source: 2002 National High School Mathematics League, Exam Two, Problem 2

March 16, 2020

Problem Statement

For real numbers a,b,ca,b,c and positive number λ\lambda such that three real roots x1,x2,x3x_1,x_2,x_3 of f(x)=x3+ax2+bx+cf(x)=x^3+ax^2+bx+c satisfying: (1)x2x1=λ(1) x_2-x_1=\lambda; (2)x3>12(x1+x2)(2) x_3>\frac{1}{2}(x_1+x_2). Find the maximum value of 2a3+27c9abλ3\frac{2a^3+27c-9ab}{\lambda^3}