MathDB
Prove periodic if bounded

Source: China TST 2018 Day 2 Q1

January 2, 2018
functionalgebra

Problem Statement

Functions f,g:Z→Zf,g:\mathbb{Z}\to\mathbb{Z} satisfy f(g(x)+y)=g(f(y)+x)f(g(x)+y)=g(f(y)+x) for any integers x,yx,y. If ff is bounded, prove that gg is periodic.