MathDB
IZHO 2018 P1(inequality)

Source: izho 2018

February 14, 2018
algebrainequalitiesgeometrytriangle inequality

Problem Statement

Let α,β,γ\alpha,\beta,\gamma measures of angles of opposite to the sides of triangle with measures a,b,ca,b,c respectively.Prove that 2(cos2α+cos2β+cos2γ)a2b2+c2+b2a2+c2+c2a2+b22(cos^2\alpha+cos^2\beta+cos^2\gamma)\geq \frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}