MathDB
The old Cauchy function [Iran Second Round 1991]

Source:

November 30, 2010
functionalgebra proposedalgebra

Problem Statement

Let f:RRf : \mathbb R \to \mathbb R be a function such that f(1)=1f(1)=1 and f(x+y)=f(x)+f(y)f(x+y)=f(x)+f(y) And for all xR/{0}x \in \mathbb R / \{0\} we have f(1x)=1f(x).f\left( \frac 1x \right) = \frac{1}{f(x)}. Find all such functions f.f.