MathDB
complicated limit of sequence, a_(n+2)=a_(n+1)+a_n/2^n

Source: VJIMC 2003 2.3

July 13, 2021
limitsreal analysisSequences

Problem Statement

Let {an}n=0\{a_n\}^\infty_{n=0} be the sequence of real numbers satisfying a0=0a_0=0, a1=1a_1=1 and an+2=an+1+an2na_{n+2}=a_{n+1}+\frac{a_n}{2^n}for every n0n\ge0. Prove that limnan=1+n=112n(n1)2k=1n(2k1).\lim_{n\to\infty}a_n=1+\sum_{n=1}^\infty\frac1{2^{\frac{n(n-1)}2}\displaystyle\prod_{k=1}^n(2^k-1)}.