MathDB
0253 permutation 2nd edition Round 5 p2

Source:

May 10, 2021
combinatorics2nd edition

Problem Statement

Let n3n \ge 3 and σSn\sigma \in S_n a permutation of the first nn positive integers. Prove that the numbers σ(1),2σ(2),3σ(3),...,nσ(n)\sigma (1), 2\sigma (2), 3\sigma(3), ... , n\sigma (n) cannot form an arithmetic, nor a geometric progression.