MathDB
2016 Taiwan TST Round 1 Quiz 1 Problem 1: Function

Source: 2016 Taiwan TST Round 1 Quiz 1 Problem 1

March 29, 2016
functionalgebraTaiwanFunctional inequality

Problem Statement

Suppose function f:[0,)[0,)f:[0,\infty)\to[0,\infty) satisfies (1)x,y0,\forall x,y \geq 0, we have f(x)f(y)y2f(x2)+x2f(y2)f(x)f(y)\leq y^2f(\frac{x}{2})+x^2f(\frac{y}{2}); (2)0x1,f(x)2016\forall 0 \leq x \leq 1, f(x) \leq 2016. Prove that f(x)x2f(x)\leq x^2 for all x0x\geq 0.