MathDB
(a+b)/c^2+(c+a)/b^2+(b+c)/a^2 >= 9/(a+b+c) +1/a + 1/b + 1/c

Source: Rioplatense Olympiad 2002 level 3 P4

September 6, 2018
algebraInequality3-variable inequalityinequalities

Problem Statement

Let a,ba, b and cc be positive real numbers. Show that a+bc2+c+ab2+b+ca29a+b+c+1a+1b+1c\frac{a+b}{c^2}+ \frac{c+a}{b^2}+ \frac{b+c}{a^2}\ge \frac{9}{a+b+c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}