MathDB
China MO 2023 Problem 1: Brother sequences

Source: China MO 2023 Day 1 P1

December 29, 2022
algebraSequence

Problem Statement

Define the sequences (an),(bn)(a_n),(b_n) by \begin{align*} & a_n, b_n > 0, \forall n\in\mathbb{N_+} \\ & a_{n+1} = a_n - \frac{1}{1+\sum_{i=1}^n\frac{1}{a_i}} \\ & b_{n+1} = b_n + \frac{1}{1+\sum_{i=1}^n\frac{1}{b_i}} \end{align*} 1) If a100b100=a101b101a_{100}b_{100} = a_{101}b_{101}, find the value of a1b1a_1-b_1; 2) If a100=b99a_{100} = b_{99}, determine which is larger between a100+b100a_{100}+b_{100} and a101+b101a_{101}+b_{101}.