MathDB
Problems
Contests
International Contests
APMO
2000 APMO
4
Two integers
Two integers
Source: APMO 2000
April 1, 2006
inequalities
induction
function
probability
Problem Statement
Let
n
,
k
n,k
n
,
k
be given positive integers with
n
>
k
n>k
n
>
k
. Prove that:
1
n
+
1
⋅
n
n
k
k
(
n
−
k
)
n
−
k
<
n
!
k
!
(
n
−
k
)
!
<
n
n
k
k
(
n
−
k
)
n
−
k
\frac{1}{n+1} \cdot \frac{n^n}{k^k (n-k)^{n-k}} < \frac{n!}{k! (n-k)!} < \frac{n^n}{k^k(n-k)^{n-k}}
n
+
1
1
⋅
k
k
(
n
−
k
)
n
−
k
n
n
<
k
!
(
n
−
k
)!
n
!
<
k
k
(
n
−
k
)
n
−
k
n
n
Back to Problems
View on AoPS