MathDB
Nice FE over R+

Source: collect

July 19, 2022
functional equationalgebra

Problem Statement

Let R+\mathbb{R}^+ denote the set of positive real numbers. Find all functions f:R+→R+f:\mathbb{R}^+ \to \mathbb{R}^+ such that x+f(yf(x)+1)=xf(x+y)+yf(yf(x))x+f(yf(x)+1)=xf(x+y)+yf(yf(x)) for all x,y>0.x,y>0.